Multisensor triplet Markov fields and theory of evidence

نویسندگان

  • Wojciech Pieczynski
  • Dalila Benboudjema
چکیده

Hidden Markov Fields (HMF) are widely applicable to various problems of image processing. In such models, the hidden process of interest X is a Markov field, which must be estimated from its observable noisy version Y. The success of HMF is due mainly to the fact that X remains Markov conditionally on the observed process, which facilitates different processing strategies such as Bayesian segmentation. Such models have been recently generalized to ‘Pairwise’ Markov fields (PMF), which offer similar processing advantages and superior modeling capabilities. In this generalization, one directly assumes the Markovianity of the pair (X,Y). Afterwards, ‘Triplet’ Markov fields (TMF) have been proposed, in which the distribution of (X,Y) is the marginal distribution of a Markov field (X,U,Y), where U is an auxiliary random field. So U can have different interpretations and, when the set of its values is not too complex, X can still be estimated from Y. The aim of this paper is to show some connections between TMF and the Dempster–Shafer theory of evidence. It is shown that TMF allow one to perform the Dempster–Shafer fusion in different general situations, possibly involving several sensors. As a consequence, Bayesian segmentation strategies remain applicable. q 2005 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dempster-Shafer fusion of multisensor signals in nonstationary Markovian context

The latest developments in Markov models’ theory and their corresponding computational techniques have opened new rooms for image and signal modeling. In particular, the use of Dempster–Shafer theory of evidence within Markov models has brought some keys to several challenging difficulties that the conventional hidden Markov models cannot handle. These difficulties are concerned mainly with two...

متن کامل

Multisensor triplet Markov chains and theory of evidence

Hidden Markov chains (HMC) are widely applied in various problems occurring in different areas like Biosciences, Climatology, Communications, Ecology, Econometrics and Finances, Image or Signal processing. In such models, the hidden process of interest X is a Markov chain, which must be estimated from an observable Y, interpretable as being a noisy version of X. The success of HMC is mainly due...

متن کامل

Multisensor image segmentation using Dempster-Shafer fusion in Markov fields context

This paper deals with the statistical segmentation of multisensor images. In a Bayesian context, the interest of using hidden Markov random fields, which allows one to take contextual information into account, has been well known for about 20 years. In other situations, the Bayesian framework is insufficient and one must make use of the theory of evidence. The aim of our work is to propose evid...

متن کامل

Estimation of Generalized Multisensor Hidden Markov Chains and Unsupervised Image Segmentation

This paper attacks the problem of generalized multisensor mixture estimation. A distribution mixture is said to be generalized when the exact nature of components is not known, but each of them belongs to a finite known set of families of distributions. Estimating such a mixture entails a supplementary difficulty: One must label, for each class and each sensor, the exact nature of the correspon...

متن کامل

Unsupervised image segmentation using triplet Markov fields

Hidden Markov fields (HMF) models are widely applied to various problems arising in image processing. In these models, the hidden process of interest X is a Markov field and must be estimated from its observable noisy version Y. The success of HMF is mainly due to the fact that the conditional probability distribution of the hidden process with respect to the observed one remains Markovian, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Image Vision Comput.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2006